Netropsin improves survival from endotoxaemia by disrupting HMGA1 binding to the NOS2 promoter.

نویسندگان

  • Marianne A Grant
  • Rebecca M Baron
  • Alvaro A Macias
  • Matthew D Layne
  • Mark A Perrella
  • Alan C Rigby
چکیده

The inducible form of nitric oxide synthase (NOS2) plays an important role in sepsis incurred as a result of infection with Gram-negative bacteria that elaborate endotoxin. The HMGA1 (high-mobility group A1) architectural transcription factor facilitates NOS2 induction by binding a specific AT-rich Oct (octamer) sequence in the core NOS2 promoter via AT-hook motifs. The small-molecule MGB (minor-groove binder) netropsin selectively targets AT-rich DNA sequences and can interfere with transcription factor binding. We therefore hypothesized that netropsin would improve survival from murine endotoxaemia by attenuating NOS2 induction through interference with HMGA1 DNA binding to the core NOS2 promoter. Netropsin improved survival from endotoxaemia in wild-type mice, yet not in NOS2-deficient mice, supporting an important role for NOS2 in the beneficial effects of MGB administration. Netropsin significantly attenuated NOS2 promoter activity in macrophage transient transfection studies and the AT-rich HMGA1 DNA-binding site was critical for this effect. EMSAs (electrophoretic mobility-shift assays) demonstrated that netropsin interferes with HMGA1 NOS2 promoter binding and NMR spectroscopy was undertaken to characterize this disruption. Chemical shift perturbation analysis identified that netropsin effectively competes both HMGA1 DNA-binding AT-hooks from the AT-rich NOS2 promoter sequence. Furthermore, NOESY data identified direct molecular interactions between netropsin and A/T base pairs within the NOS2 promoter HMGA1-binding site. Finally, we determined a structure of the netropsin/NOS2 promoter Oct site complex from molecular modelling and dynamics calculations. These findings represent important steps toward refined structure-based ligand design of novel compounds for therapeutic benefit that can selectively target key regulatory regions within genes that are important for the development of critical illness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooperation between HMGA1, PDX-1, and MafA is Essential for Glucose-Induced Insulin Transcription in Pancreatic Beta Cells

The high-mobility group AT-hook 1 (HMGA1) protein is a nuclear architectural factor that can organize chromatin structures. It regulates gene expression by controlling the formation of stereospecific multiprotein complexes called "enhanceosomes" on the AT-rich regions of target gene promoters. Previously, we reported that defects in HMGA1 caused decreased insulin receptor expression and increas...

متن کامل

HMGA1 is a novel downstream nuclear target of the insulin receptor signaling pathway

High-mobility group AT-hook 1 (HMGA1) protein is an important nuclear factor that activates gene transcription by binding to AT-rich sequences in the promoter region of DNA. We previously demonstrated that HMGA1 is a key regulator of the insulin receptor (INSR) gene and individuals with defects in HMGA1 have decreased INSR expression and increased susceptibility to type 2 diabetes mellitus. In ...

متن کامل

Distamycin A Inhibits HMGA1-Binding to the P-Selectin Promoter and Attenuates Lung and Liver Inflammation during Murine Endotoxemia

BACKGROUND The architectural transcription factor High Mobility Group-A1 (HMGA1) binds to the minor groove of AT-rich DNA and forms transcription factor complexes ("enhanceosomes") that upregulate expression of select genes within the inflammatory cascade during critical illness syndromes such as acute lung injury (ALI). AT-rich regions of DNA surround transcription factor binding sites in gene...

متن کامل

Functional relationship between high mobility group A1 (HMGA1) protein and insulin-like growth factor-binding protein 3 (IGFBP-3) in human chondrocytes

INTRODUCTION Insulin-like growth factor I (IGF-I) regulates articular cartilage homeostasis. During osteoarthritis (OA), the anabolic responses of chondrocytes to IGF-I are likely to be prevented by the enhanced production of IGF-binding proteins (IGFBPs), especially IGFBP-3. The aim of this study is to evaluate whether the architectural transcription factor high mobility group A1 (HMGA1) influ...

متن کامل

HMGA1 is a novel transcriptional regulator of the FoxO1 gene

PURPOSE The forkhead transcription factor (FoxO1) is a master transcriptional regulator of fundamental cellular processes ranging from cell proliferation and differentiation to inflammation and metabolism. However, despite its relevance, the mechanism(s) underlying FoxO1 gene regulation are largely unknown. We have previously shown that the chromatin factor high-mobility group A1 (HMGA1) plays ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 418 1  شماره 

صفحات  -

تاریخ انتشار 2009